Fast enumeration of magic squares

2025.07 Hidetoshi Mino

Magic square of order N

• A square grid of distinct integers (1~N²) where the sum of the integers in each row, each column, and both diagonals is the same.

Magic square of order N

	1	2	•••	N
1	7	3	•••	21
2	14	8	•••	10
	•		-	-
	•	-	•	-
	-		•	•
N	1	9	•••	5
1		,	7	+

• A square grid of distinct integers (1~N²) where the sum of the integers in each row, each column, and both diagonals is the same.

Magic square of order N

- A square grid of distinct integers (1~N²) where the sum of the integers in each row, each column, and both diagonals is the same.
- The sum is called 'magic sum' and equals to (N + N³)/2.

Enumeration of magic squares

N	The number of magic squares up to rotations and reflections		
3	1		
4	880	1693	F. de Bessy
5	275305224	1973	R. Schroeppel
6	17753889197660635632	2024	H. Mino

Representations of NxN square grid of distinct integers (not necessarily magic)

Matrix representation

	1	2		N
1	7	3	• • •	21
2	14	8	• • •	10
	•	•		•
•	=	•		•
•	•	•		•
N	1	9	•••	5

A mapping from a row column indices pair to an element value

example: 2,1 → 14

Row sets-Column sets representation

Ci
$$\cap$$
 Cj = \emptyset for $i \neq j$
Ri \cap Rj = \emptyset for $i \neq j$

One to one correspondence

Row sets Column Sets

$$R_1, R_2, ... R_N$$
 $C_1, C_2, ... C_N$

$$Ri \cap Rj = \emptyset \text{ for } i \neq j$$

$$Ci \cap Cj = \emptyset \text{ for } i \neq j$$

$$|Ri \cap Cj| = 1$$

Matrix

7	3	•••	21
14	8	•••	10
•		•	•
-	•	-	•
		•	-
1	9	•••	5

Binary coding of a distinct integer set

example:

```
\{7, 3, 10\} = 2^{7-1} + 2^{3-1} + 2^{10-1}
= 1000000_2 + 100_2 + 10000000000_2
= 1001000100_2
= 580_{(10)}
```

Natural and convenient representation of a set.

Set operations (intersection, union, complement, etc.) can be performed by bitwise logical operations.

Order relation can be defined by the integer comparison.

Binary coded Row sets-Column sets (BRC) representation for the magic square enumeration

BRC representation for the magic square enumeration

- Merits:
 - Fewer primitive data objects
 - 2N (long int) vs N²(short int)
 Utilizes the power of the long word CPU/GPU
 - The row and column sum constraints are easily incorporated.
 - Fast set operations
 - Works well with M-transformations.

 Transformations which make one magic square into another magic square.

exchange R2 and R5

and

exchange C2 and C5

- another example in N=6
 - exchange C1 and C3
 - and
 - exchange C4 and C6⁴
 - and
 - exchange R1 and R3
 - and
 - exchange R4 and R6

• and more ...

- Permuting rows and permute columns conjointly
- The permutation must be symmetric with respect to the center lines.

N	3	4	5	6	7	8
Multiplicity	1	4	4	24	24	192

 Conjoint total reflection is the 180deg rotation and is excluded.

- M-transformations consist of permutations of rows and that of columns.
- All magic squares generated by M-transformations correspond to the same combination of row sets and column sets.

M-transformations change only the order of sets within row sets and that within column sets.

BRC representation for the magic square enumeration

- Concern:
 - Not immediately clear how the diagonal sum constraints are incorporated.
 - This presentation shows a solution.

Enumerate semi-magic (including magic) squares

Semi-magic (including magic) squares

- A square grid of distinct integers (1~N²) where the sum of the integers in each row, each column are the same.
- Some people count magic's in semi-magic's, others don't.
- We are going to enumerate inclusively in any case.

Semi-magic (including magic) squares

- Let us, for the moment, ignore the diagonal constraints.
 - Semi-magic squares are included int the enumeration.
 - The inclusive enumeration is easier than the exclusive one of magic squares.

Magic series

- Magic series of order N :
 - A set of N distinct integers in the range $1 \sim N^2$ which add up to the magic sum.
 - Example:
 - { 2, 9, 4 } is a magic series of order 3
 - The sum equals to 15.
 - { 10, 7, 14, 3 } is a magic series of order 4
 - The sum equals to 34.

Magic series

 Every Row set Ri and every Column set Cj of a semimagic or magic square is a magic series.

We make the list of all magic series as the first step of

the enumeration.

N	The number of magic series
3	8
4	86
5	1,394
6	32,134
7	9,957,332

Enumeration of semi-magic squares

Enumerate all possibilities of Ri and Cj such that

R₁, R₂, ... R_N: magic series

 $C_1, C_2, \dots C_N$: magic series

Ri
$$\cap$$
 Rj = \emptyset for $i \neq j$
Ci \cap Cj = \emptyset for $i \neq j$

$$|Ri \cap Cj| = 1$$

1 to 1 correspondence

7	3	•••	21
14	8	•••	10
			•
1	9	•••	5

(N!)²/4 multiplicity

We only have to enumerate Ri and Cj such that

$$R_1, > R_2, > ... > R_N$$

$$C_1, > C_2, > ... > C_N$$

All permutations of R's and that of C's generate different semi-magic and magic squares. Hence, multiply by (N!)²/4.

To eliminate the remaining trivial duplicates, add a constraint $R_1 > C_1$

Result for N = 6

The result for N= 6: The number of combinations of Ri and Cj such that

- R_1 , $> R_2$, $> ... > R_6$: magic series, $R_i \cap R_j = \emptyset$ for $i \neq j$
- C_1 , $> C_2$, $> ... > C_6$: magic series, $C_i \cap C_j = \emptyset$ for $i \neq j$
- $R_1 > C_1$, $|R_i \cap C_j| = 1$

is 729 866 205 597 222 196.

x 6! x 6! / 4 => 94 590 660 245 399 996 601 600.

matches the result by A. Ripatti (2018).

How about the magic square?

Highly optimized code on Nvidia RTX-4090 can completes the semi-magic enumeration roughly in 10,000 hours (14 months).

Can we incorporate the diagonal constraints into this approach without prohibiting overheads?

YES

Fast enumeration of magic squares

A naive approach

- As in the case of semi-magic square, generate R's and C's such that
 - $-R_1, > R_2, > ... > R_N$: magic series, $R_i \cap R_j = \emptyset$ for $i \neq j$
 - C_1 , > C_2 , > ... > C_N : magic series, $C_i \cap C_j = \emptyset$ for $i \neq j$
 - $-R_1 > C_1, |R_i \cap C_j| = 1$
- Check the diagonal sums for every permutations for the row sets and column sets. (N!)² / 4 ways of permutations to check.
- It is a correct method, but practically prohibitive.

A naive approach

As in the case of sep

C's such that

- $-R_1, > R_2, >$
- $-C_1, > C_2, >$
- $-R_1 > C_1$
- Check the diag row sets and co permutations to ch
- It is a correct method, but ally prohibitive.

sums for

sets.

🤏 generate R's and

agic series $\cap R_j = \emptyset$ for $i \neq j$ vic series,

 $\cap C_i = \emptyset \text{ for } i \neq i$

lutations for the ays of

Add diagonal candidate magic series

Generate R's, C's, and X's such that

```
- R<sub>1</sub>, > R<sub>2</sub>, > ... > R<sub>N</sub>: magic series, R<sub>i</sub> ∩ R<sub>j</sub> = Ø for i ≠ j

- C<sub>1</sub>, > C<sub>2</sub>, > ... > C<sub>N</sub>: magic series, C<sub>i</sub> ∩ C<sub>j</sub> = Ø for i ≠ j

- R<sub>1</sub> > C<sub>1</sub>, | R<sub>i</sub> ∩ C<sub>j</sub> | = 1
```

- $X_1 > X_2$: magic series
- $|X_i \cap R_i| = 1$
- $|X_i \cap C_i| = 1$
- $| X_1 \cap X_2 | = N \mod 2$

Add diagonal (candidate) magic series

- The existence of R's, C's, and X's is not sufficient but only necessary for magic squares.
- How do we identify magic squares?
- Given sets of R's and of C's, a semi-magic square is determined.
- Let us see the arrangement of X's on the square.

Arrangement of diagonal candidates

	X1			X2	
		X2	X1		
		X1			X2
X1			X2		
	X2				X1
X2				X1	

 By Permuting R's and C's, can we make X's diagonal?

 Answer this question without trying many permutations!

Arrangement of X is a permutation

	X1			X2	
		X2	X1		
		X1			X2
X1			X2		
	X2				X1
X2				X1	

- Elements of X appear once and only once in each row and in each column.
- Arrangement of X represents a permutation of N object, or an element of the symmetric group S_N.
- Let up denote
 - Arrangement of X1 by $d \in S_N$
 - Arrangement of X2 by $u \in S_N$

X₁ aligned down diagonal

X1					X2
	X1	X2			
		X1		X2	
	X2		X1		
X2				X1	
			X2		X1

 By permuting columns(or rows), we can always align X1 down diagonal.

$$d \rightarrow dd^{-1} = e$$
, $u \rightarrow ud^{-1}$

- To keep X1 down diagonal,
 - further rearrangement is restricted to conjoint permutations of rows and columns.
- Can we align X2 up diagonal?

No, in this case. Why?

Conjugacy relation

 Conjoint permutation of rows and columns is a conjugate transformation:

$$X \rightarrow P^{-1}XP$$
, $X, P \in S_N$

Can we align X2 upward diagonal?

 Is ud⁻¹ conjugate to the upward diagonal (reversed order) permutation?

ud⁻¹ 1 2 3 4 5 6 up diagonal 1 2 3 4 5 6

542631

654321

A theorem in the symmetric group

 Two permutations are conjugate if and only if they have the same cycle type.

Cycle type of the upward diagonal permutation

 The cycle type of the upward diagonal (reversed order) permutation consists as many 2-cycles as possible and only one unpaired 1-cycle for odd N.

_	1 ↔	N.	2 ↔	N-1,	3 ↔	N-2	
	·	7		1	_	—	

(N+1)/2 is a 1-cycle for odd N

					•
				•	
			•		
		•			
	•				
•					

Up diagonal perm.

123456

654321

No need to worry about 1-cycle

X1					X2
	X1	X2			
		X1		X2	
	X2		X1		
X2				X1	
			X2		X1

- Because we have imposed that
 | X₁ ∩ X₂| = N mod 2
- No elements of X₂ appears on the diagonal line for even N.
 Only one appears for odd N.
- This ensure automatically the correct 1-cycle components.

All we have to check

X1					X2
	X1	X2			
		X1		X2	
	X2		X1		
X2				X1	
			X2		X1

- ud⁻¹ has no cycles longer than 2,
- or $(ud^{-1})^2 = e$

How to check $(ud^{-1})^2 = e$?

	X1			X2	
		X2	X1		
		X1			X2
X1			X2		
	X2				X1
X2				X1	

 For a permutation p, we define a function p() such that

• $(ud^{-1})^2 = e$ is expressed as

$$u(d^{-1}(u(d^{-1}(1))) = 1$$

 $u(d^{-1}(u(d^{-1}(2))) = 2$
 $u(d^{-1}(u(d^{-1}(3))) = 3$

. . . .

How far to go?
No need to check all.

How to compute u() and d⁻¹()?

	X1			X2	
		X2	X1		
		X1			X2
X1			X2		
	X2				X1
X2				X1	

- Provided
 - Intersec(X, C)
 - The common element of two magic series.
 - Elem2row(elem)
 - Elem2col(elem)
 - Which row/column an element belongs to.
- d⁻¹(i) =
 Elem2col(Intersec(X1, Ri))
- u(i) =Elem2row(Intersec(X2, Ci))

Intersec(), Elem2row/col[]

- Intersec(X, Y)
 - Find the bit position of X & Y (bit-wise and)
 - using Count Leading Zero instruction, or ...
- Elem2row/col[elem]
 - Maintain auxiliary arrays which map elements to row/column.
- See sequel videos for details.

For N=6


```
if u(d^{-1}(u(d^{-1}(1)))) == 1
   we find a 2-cycle (1, u(d^{-1}(1))).
else no magic square, stop
If( u( d^{-1}(1) ) != 2 )
   check if u( d^{-1}(u(d^{-1}(2)))) == 2
else
   check if u( d^{-1}(u(d^{-1}(3)))) == 3
```

• If passed all the above checks, we have two 2-cycles. Remaining elements cannot form a 3-cycle or longer.

Check function at the deepest level

Bool MagicSquare(R[], C[], X[], elem2row[], elem2col[]) {

```
int c1 = elem2col[Intersec(X[1], R[1]);
If ( elem2row[ intersec( X[2], C[ c1 ] ] != 1 )
   return false;
int r2 = (c1==2)?3:2;
int c2 = elem2col[Intersec(X[1], R[r2])];
return elem2row[intersec( X[2], C[c2])] == r2;
```

Check function at the deepest level

Bool MagicSquare(R[], C[], X[], elem2row[], elem2col[]) {

- No loops
- No function calls
- No large tables
- No side effects (important for parallelization)

}

A graphical view

	X1			X2	
		X2	X1		
		X1			X2
X1			X2		
	X2				X1
X2				X1	

A graphical view

X1					X2
	X1	X2			
		X1		X2	
	X2		X1		
X2				X1	
			X2		X1

 Which arrangement of X2 after X1 diagonalized leads to a magic square?

Symmetric patterns lead to magic squares

Symmetric patterns of up-diagonal candidates for N=6 (A conjugacy class of S_6)

A graphical view

X1					X2
	X1	X2			
		X1		X2	
	X2		X1		
X2				X1	
			X2		X1

 Place 1 in place of X2 and 0 otherwise.

Permutation matrix

0	0	0	0	0	1
0	0	1	0	0	0
0	0	0	0	1	0
0	1	0	0	0	0
1	0	0	0	0	0
0	0	0	1	0	0

- A permutation matrix P is an orthogonal matrix which represents a permutation.
- $P^2 = I$ for the eligible arrangements.

•
$$P^2 = I \rightarrow P = P^{-1} \rightarrow P = P^T$$

P must be symmetric.

Result for N = 6

N = 6

- Generate R's, C's, and X's such that
 - R_1 , > R_2 , > ... > R_6 : magic series, $R_i \cap R_j = \emptyset$ for $i \neq j$
 - C_1 , > C_2 , > ... > C_6 : magic series, $C_i \cap C_j = \emptyset$ for $i \neq j$
 - $-R_1 > C_1, |R_i \cap C_j| = 1$
 - $X_1 > X_2$: magic series
 - $| X_i \cap R_i | = 1$
 - $| X_i \cap C_i | = 1$
 - $| X_1 \cap X_2 | = N \mod 2$
- And check if MagicSquare(Rs, Cs, Xs) return true.

Result for N = 6

- Generate R's, C's, and X's such that
 -
- And check if MagicSquare(R's, C's, X's) returns true.

- There are
 - 739 745 383 235 859 818 combinations.

M-transformation

- M-transformations consist of permutation of rows and that of columns and preserve elements in diagonal lines.
- All magic squares generated by M-transformations correspond to the same combination of R's, C's, and X's.
- Every time the function MagicSquare(R[], C[], X[], elem2row, elem2col) return true, we get all magic squares generated by the M-transformation as a set.
- Simply multiply the result by 24 for N=6.

Result for N = 6

- There are
 - 739 745 383 235 859 818 combinations.
 - x24 = 17 753 889 197 660 635 632 magic squares.

Computation time

 An optimized code running on a single RTX-4090 system enumerates 6x6 magic squares in about

54,000 hours. = 6 years and 3 months

 The final result was obtained by performing the enumeration twice to detect and correct hardware errors.

The entire calculation took about 2 years of real time using many GPU resources on cloud services.

To be explained

To be explained

- High degree parallelization
 - Roughly 20,000 threads on an RTX-4090
- Factoring, optimizations, and tricks
 - Some are GPU specific
- How to maintain elem2row/column tables
- Halving the enumeration using complementarity
- Utilizing cheap resources on clouds
- All the above are indispensable for N=6 enumeration to be feasible.
- See sequel videos for details.

References

• See the description text of this video.