
Fast enumeration of magic squares

2025.07 Hidetoshi Mino

 2

Magic square of order N

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

1 2 … N

1

2

.

.

.

N

● A square grid of distinct
integers (1〜N2) where the
sum of the integers in each
row, each column, and both
diagonals is the same.

 3

Magic square of order N

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

1 2 … N

1

2

.

.

.

N

● A square grid of distinct
integers (1〜N2) where the
sum of the integers in each
row, each column, and both
diagonals is the same.

 4

Magic square of order N

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

1 2 … N

1

2

.

.

.

N

● A square grid of distinct
integers (1〜N2) where the
sum of the integers in each
row, each column, and both
diagonals is the same.

● The sum is called ‘magic
sum’ and equals to
(N + N3)/2.

 5

Enumeration of magic squares

N The number of magic squares
up to rotations and reflections

3 1

4 880 1693 F. de Bessy

5 275305224 1973 R. Schroeppel

6 17753889197660635632 2024 H. Mino

Representations of
NxN square grid of distinct integers

 (not necessarily magic)

 7

Matrix representation

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

1 2 … N

1

2

.

.

.

N

A mapping from a row
column indices pair to
an element value

example: 2,1 → 14

 8

Row sets-Column sets representation

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

. 21 .
3 . 7

. 14 .
10 .

8

. 9 . 1 .
5 .

R1

R2

RN

. 14 . 7
.

. 1

C1 . 8 .
3 .

. 9

C2
. 21 .

10 . 5

CN

Ci ∩ Cj = for i ∅ ≠ j
Ri ∩ Rj = for i ∅ ≠ j

| Ci ∩ Rj | = 1

 9

One to one correspondence

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

R1, R2, … RN

C1, C2, … CN

Ri ∩ Rj = for i ∅ ≠ j
Ci ∩ Cj = for i ∅ ≠ j

| Ri ∩ Cj | = 1

Row sets Column Sets Matrix

Ri ∩ Cj = { Mi,j }

 10

Binary coding of a distinct integer set

{ 7, 3, 10 } => 27-1 + 23-1 + 210-1

 = 10000002 + 1002 + 100000000002

 = 10010001002

 = 580(10)

example:

Natural and convenient representation of a set.

Set operations (intersection, union, complement, etc) can be
performed by bitwise logical operations.

Order relation can be defined by the integer comparison.

Binary coded Row sets-Column sets (BRC)
representation

for the magic square enumeration

 12

BRC representation
for the magic square enumeration

● Merits:
– Fewer primitive data objects

● 2N (long int) vs N2(short int)
Utilizes the power of the long word CPU/GPU

– The row and column sum constraints are easily
incorporated.

– Fast set operations
– Works well with M-transformations.

 13

M-transformations

● Transformations which make one magic square into
another magic square.

● an example in N=6
– exchange R2 and R5
– and
– exchange C2 and C5

C1 C2 C3 C4 C5 C6

R1

R2

R3

R4

R5

R6

 14

M-transformations

● another example in N=6
– exchange C1 and C3
– and
– exchange C4 and C6
– and
– exchange R1 and R3
– and
– exchange R4 and R6

● and more ...

C1 C2 C3 C4 C5 C6

R1

R2

R3

R4

R5

R6

 15

M-transformations

● Permuting rows and
permute columns conjointly

● The permutation must be
symmetric with respect to
the center lines.

● Conjoint total reflection is
the 180deg rotation and is
excluded.

C1 C2 C3 C4 C5 C6

R1

R2

R3

R4

R5

R6

N 3 4 5 6 7 8

Multiplicity 1 4 4 24 24 192

 16

M-transformations

● M-transformations consist of permutations of rows and
that of columns.

● All magic squares generated by M-transformations
correspond to the same combination of row sets and
column sets.

M-transformations change only the order of sets within
row sets and that within column sets.

 17

BRC representation
for the magic square enumeration

● Concern:
– Not immediately clear how the diagonal sum

constraints are incorporated.
● This presentation shows a solution.

Enumerate semi-magic
(including magic) squares

 19

Semi-magic (including magic) squares

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

1 2 … N

1

2

.

.

.

N

● A square grid of distinct
integers (1〜N2) where the
sum of the integers in each
row, each column are the
same.

● Some people count magic’s
in semi-magic’s, others don’t.

● We are going to enumerate
inclusively in any case.

 20

Semi-magic (including magic) squares

● Let us, for the moment, ignore the diagonal
constraints.
– Semi-magic squares are included int the

enumeration.
– The inclusive enumeration is easier than the

exclusive one of magic squares.

 21

Magic series

● Magic series of order N :
– A set of N distinct integers in the range 1 〜 N2

which add up to the magic sum.
– Example:

● { 2, 9, 4 } is a magic series of order 3
– The sum equals to 15.

● { 10, 7, 14, 3 } is a magic series of order 4
– The sum equals to 34.

 22

Magic series

● Every Row set Ri and every Column set Cj of a semi-
magic or magic square is a magic series.

● We make the list of all magic series as the first step of
the enumeration.

N The number of magic series

3 8

4 86

5 1,394

6 32,134

7 9,957,332

 23

Enumeration of semi-magic squares

7 3 … 21

14 8 … 10

.

.

.

.

.

.

.
 .

 .

.

.

.

1 9 … 5

R1, R2, … RN : magic series

C1, C2, … CN : magic series

Ri ∩ Rj = for i ∅ ≠ j
Ci ∩ Cj = for i ∅ ≠ j

| Ri ∩ Cj | = 1 1 to 1
correspondence

Enumerate all possibilities of Ri and Cj such that

 24

(N!)2/4 multiplicity

R1, > R2, > … > RN

C1, > C2, > … > CN

All permutations of R’s and that of C’s generate different
semi-magic and magic squares. Hence, multiply by (N!)2/4.

We only have to enumerate Ri and Cj such that

To eliminate the remaining trivial duplicates, add a
constraint R1 > C1

 25

Result for N = 6

● R1, > R2, > … > R6 : magic series, Ri ∩ Rj = for i ∅ ≠ j
● C1, > C2, > … > C6 : magic series, Ci ∩ Cj = for i ∅ ≠ j
● R1 > C1, | Ri ∩ Cj | = 1

The result for N= 6:
The number of combinations of Ri and Cj such that

is 729 866 205 597 222 196.

x 6! x 6! / 4 => 94 590 660 245 399 996 601 600.

matches the result by A. Ripatti (2018).

 26

How about the magic square?

Highly optimized code on Nvidia RTX-4090 can
completes the semi-magic enumeration roughly in
10,000 hours (14 months).

Can we incorporate the diagonal constraints into this
approach without prohibiting overheads?

YES

Fast enumeration of magic squares

 28

A naive approach

● As in the case of semi-magic square, generate R’s and
C’s such that
– R1, > R2, > … > RN : magic series, Ri ∩ Rj = for i ∅ ≠ j
– C1, > C2, > … > CN : magic series, Ci ∩ Cj = for i ∅ ≠ j
– R1 > C1, | Ri ∩ Cj | = 1

● Check the diagonal sums for every permutations for the
row sets and column sets. (N!)2 / 4 ways of
permutations to check.

● It is a correct method, but practically prohibitive.

 29

A naive approach

● As in the case of semi-magic square, generate R’s and
C’s such that
– R1, > R2, > … > RN : magic series, Ri ∩ Rj = for i ∅ ≠ j
– C1, > C2, > … > CN : magic series, Ci ∩ Cj = for i ∅ ≠ j
– R1 > C1, | Ri ∩ Cj | = 1

● Check the diagonal sums for every permutations for the
row sets and column sets. (N!)2 / 4 ways of
permutations to check.

● It is a correct method, but practically prohibitive.

 30

Add diagonal candidate magic series

● Generate R’s, C’s, and X’s such that

– R1, > R2, > … > RN : magic series, Ri ∩ Rj = for i ∅ ≠ j
– C1, > C2, > … > CN : magic series, Ci ∩ Cj = for i ∅ ≠ j
– R1 > C1, | Ri ∩ Cj | = 1

– X1 > X2 : magic series
– | Xi ∩ Rj | = 1
– | Xi ∩ Cj | = 1
– | X1 ∩ X2 | = N mod 2

 31

Add diagonal (candidate) magic series

● The existence of R’s, C’s, and X’s is not sufficient but only
necessary for magic squares.

● How do we identify magic squares?
● Given sets of R’s and of C’s, a semi-magic square is

determined.
● Let us see the arrangement of X’s on the square.

 32

Arrangement of diagonal candidates
● By Permuting R’s and C’s, can

we make X’s diagonal?

● Answer this question without
trying many permutations!

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

 33

Arrangement of X is a permutation
● Elements of X appear once

and only once in each row and
in each column.

● Arrangement of X represents a
permutation of N object, or an
element of the symmetric
group SN.

● Let up denote
– Arrangement of X1 by d S∈ N

– Arrangement of X2 by u S∈ N

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

d 1 2 3 4 5 6 u 1 2 3 4 5 6
 4 1 3 2 6 5 6 5 2 4 1 3

 34

X1 aligned down diagonal

● By permuting columns(or
rows), we can always align X1
down diagonal.
d → dd-1 = e, u → ud-1

● To keep X1 down diagonal,
– further rearrangement is

restricted to conjoint
permutations of rows and
columns.

● Can we align X2 up diagonal?

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1

No, in this case. Why?

 35

Conjugacy relation
● Conjoint permutation of rows and

columns is a conjugate
transformation:
– X → P-1 X P, X, P S∈ N

● Can we align X2 upward diagonal?

● Is ud-1 conjugate to the upward
diagonal (reversed order)
permutation?

X2

X2 ・

・ X2

X2 ・
X2 ・

・ X2

ud-1 1 2 3 4 5 6　up diagonal 1 2 3 4 5 6

 5 4 2 6 3 1 6 5 4 3 2 1

 36

A theorem in the symmetric group

● Two permutations are conjugate if and only if they have
the same cycle type.

 37

Cycle type of the upward diagonal permutation

● The cycle type of the upward diagonal
(reversed order) permutation consists
as many 2-cycles as possible and only
one unpaired 1-cycle for odd N.
– 1↔︎N, 2↔︎N-1, 3↔︎N-2 ….

● (N+1)/2 is a 1-cycle for odd N

・
・

・
・

・
・

Up diagonal perm.
1 2 3 4 5 6
6 5 4 3 2 1

 38

No need to worry about 1-cycle

● Because we have imposed that

| X1 ∩ X2 | = N mod 2
● No elements of X2 appears on

the diagonal line for even N.

Only one appears for odd N.

● This ensure automatically the
correct 1-cycle components.

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1

 39

All we have to check

● ud-1 has no cycles longer than 2,
● or (ud-1)2 = e

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1

 40

How to check (ud-1)2 = e ?
● For a permutation p, we define

a function p() such that

p: 1 2 3 … N
 p(1) p(2) p(3) …. p(N)

● (ud-1)2 = e is expressed as

u(d-1(u(d-1(1))) = 1
u(d-1(u(d-1(2))) = 2
u(d-1(u(d-1(3))) = 3
….
How far to go ?
No need to check all.

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

d 1 2 3 4 5 6 u 1 2 3 4 5 6
 4 1 3 2 6 5 6 5 2 4 1 3

 41

How to compute u() and d-1()?
● Provided

– Intersec(X, C)
● The common element of two

magic series.
– Elem2row(elem)
– Elem2col(elem)

● Which row/column an element
belongs to.

● d-1(i) =
Elem2col(Intersec(X1, Ri))

● u(i) =
Elem2row(Intersec(X2, Ci))

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

d 1 2 3 4 5 6 u 1 2 3 4 5 6
 4 1 3 2 6 5 6 5 2 4 1 3

 42

Intersec(), Elem2row/col[]

● Intersec(X, Y)
– Find the bit position of X & Y (bit-wise and)
– using Count Leading Zero instruction, or ...

● Elem2row/col[elem]
– Maintain auxiliary arrays which map elements to

row/column.
● See sequel videos for details.

 43

For N=6

if u(d-1(u(d-1(1)))) == 1

we find a 2-cycle (1, u(d-1(1)).

else no magic square, stop

If(u(d-1(1)) != 2)

check if u(d-1(u(d-1(2)))) == 2

else

check if u(d-1(u(d-1(3)))) == 3
● If passed all the above checks, we have two 2-cycles.

Remaining elements cannot form a 3-cycle or longer.

 44

Check function at the deepest level

● Bool MagicSquare(R[], C[], X[], elem2row[], elem2col[]) {

int c1 = elem2col[Intersec(X[1], R[1])];

If (elem2row[intersec(X[2], C[c1]] != 1)
return false;

int r2 = (c1==2) ? 3 : 2;

int c2 = elem2col[Intersec(X[1], R[r2])];

return elem2row[intersec(X[2], C[c2])] == r2;

}

 45

Check function at the deepest level

● Bool MagicSquare(R[], C[], X[], elem2row[], elem2col[]) {

– No loops
– No function calls
– No large tables
– No side effects (important for parallelization)

}

 46

A graphical view

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

 47

A graphical view

● Which arrangement of X2 after
X1 diagonalized leads to a
magic square?

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1

 48

Symmetric patterns of up-diagonal candidates for N=6 (A conjugacy class of S_6)

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

Symmetric patterns lead to magic squares

 49

A graphical view

● Place 1 in place of X2 and 0
otherwise.

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1

 50

Permutation matrix

● A permutation matrix P is an
orthogonal matrix which
represents a permutation.

● P2 = I for the eligible
arrangements.

● P2 = I → P = P-1 → P = PT

● P must be symmetric.

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

Result for N = 6

 52

N = 6

● Generate R’s, C’s, and X’s such that

– R1, > R2, > … > R6 : magic series, Ri ∩ Rj = for i ∅ ≠ j
– C1, > C2, > … > C6 : magic series, Ci ∩ Cj = for i ∅ ≠ j
– R1 > C1, | Ri ∩ Cj | = 1
– X1 > X2 : magic series
– | Xi ∩ Rj | = 1
– | Xi ∩ Cj | = 1
– | X1 ∩ X2 | = N mod 2

● And check if MagicSquare(Rs, Cs, Xs) return true.

 53

Result for N = 6

● Generate R’s, C’s, and X’s such that

– ….
● And check if MagicSquare(R’s, C’s, X’s) returns true.

● There are
– 739 745 383 235 859 818 combinations.

 54

M-transformation

● M-transformations consist of permutation of rows and
that of columns and preserve elements in diagonal lines.

● All magic squares generated by M-transformations
correspond to the same combination of R’s, C’s, and X’s.

● Every time the function MagicSquare(R[], C[], X[],
elem2row, elem2col) return true, we get all magic
squares generated by the M-transformation as a set.

● Simply multiply the result by 24 for N=6.

 55

Result for N = 6

● There are
– 739 745 383 235 859 818 combinations.
– x24 = 17 753 889 197 660 635 632 magic squares.

 56

Computation time

● An optimized code running on a single RTX-4090 system
enumerates 6x6 magic squares in about

54,000 hours. = 6 years and 3 months
● The final result was obtained by performing the

enumeration twice to detect and correct hardware errors.

The entire calculation took about 2 years of real time using
many GPU resources on cloud services.

To be explained

 58

To be explained
● High degree parallelization

– Roughly 20,000 threads on an RTX-4090
● Factoring, optimizations, and tricks

– Some are GPU specific
● How to maintain elem2row/column tables
● Halving the enumeration using complementarity
● Utilizing cheap resources on clouds
● All the above are indispensable for N=6 enumeration to

be feasible.
● See sequel videos for details.

 59

References

● See the description text of this video.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

