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● A square grid of distinct  
integers ( 1〜N2 ) where the 
sum of the integers in each 
row, each column, and both 
diagonals is the same. 
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● A square grid of distinct 
integers ( 1〜N2 ) where the 
sum of the integers in each 
row, each column, and both 
diagonals is the same. 

● The sum is called ‘magic 
sum’ and equals to
( N + N3 )/2.
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Enumeration of magic squares

N The number of magic squares
up to rotations and reflections

3 1

4 880 1693  F. de Bessy

5 275305224 1973  R. Schroeppel

6 17753889197660635632 2024  H. Mino



Representations of 
NxN square grid of distinct integers

 ( not necessarily magic ) 
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Matrix representation
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A mapping from a row 
column indices pair to 
an element value

example: 2,1 → 14
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Row sets-Column sets representation
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Ci  ∩ Cj =    for  i ∅ ≠ j
Ri  ∩ Rj =    for  i ∅ ≠ j

| Ci ∩ Rj |  = 1
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One to one correspondence
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R1, R2, … RN

C1, C2, … CN

Ri  ∩ Rj =    for  i ∅ ≠ j
Ci  ∩ Cj =    for  i ∅ ≠ j

| Ri ∩ Cj |  = 1

Row sets Column Sets Matrix

Ri ∩ Cj  =  { Mi,j }
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Binary coding of a distinct integer set

{ 7, 3, 10 }  =>   27-1 + 23-1 + 210-1

                  =   10000002 + 1002 + 100000000002

                  =   10010001002

                  =   580(10)

example:

Natural and convenient representation of a set.

Set operations ( intersection, union, complement, etc ) can be 
performed by bitwise logical operations.

Order relation can be defined by the integer comparison.



Binary coded Row sets-Column sets (BRC) 
representation

for the magic square enumeration
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BRC representation
for the magic square enumeration

● Merits:
– Fewer primitive data objects

● 2N (long int) vs N2(short int)
Utilizes the power of the long word CPU/GPU

– The row and column sum constraints are easily 
incorporated. 

– Fast set operations
– Works well with M-transformations.
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M-transformations

● Transformations which make one magic square into 
another magic square.

● an example in N=6
– exchange R2 and R5
– and
– exchange C2 and C5

C1   C2    C3   C4    C5   C6

R1

R2

R3

R4

R5

R6
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M-transformations

● another example in N=6
– exchange C1 and C3
– and
– exchange C4 and C6
– and
– exchange R1 and R3
– and
– exchange R4 and R6

● and more ...

C1   C2    C3   C4    C5   C6

R1

R2

R3

R4

R5

R6
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M-transformations

● Permuting rows and 
permute columns conjointly

● The permutation must be 
symmetric with respect to 
the center lines.

● Conjoint total reflection is 
the 180deg rotation and is 
excluded.

C1   C2    C3   C4    C5   C6

R1

R2

R3

R4

R5

R6

N 3 4 5 6 7 8

Multiplicity 1 4 4 24 24 192
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M-transformations

● M-transformations consist of permutations of rows and 
that of columns.

● All magic squares generated by M-transformations 
correspond to the same combination of row sets and 
column sets.

M-transformations change only the order of sets within 
row sets and that within column sets. 
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BRC representation
for the magic square enumeration

● Concern:
– Not immediately clear how the diagonal sum 

constraints are incorporated.  
● This presentation shows a solution.  



Enumerate semi-magic 
(including magic) squares
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Semi-magic (including magic) squares
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● A square grid of distinct  
integers ( 1〜N2 ) where the 
sum of the integers in each 
row, each column are the 
same. 

● Some people count magic’s 
in semi-magic’s, others don’t.

● We are going to enumerate 
inclusively in any case.
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Semi-magic (including magic) squares

● Let us, for the moment, ignore the diagonal 
constraints.
– Semi-magic squares are included int the 

enumeration.
– The inclusive enumeration is easier than the 

exclusive one of magic squares.
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Magic series

● Magic series of order N :
– A set of N distinct integers in the range  1 〜 N2   

which add up to the magic sum.
– Example:

● { 2, 9, 4 } is a magic series of order 3
– The sum equals to 15.

● { 10, 7, 14, 3 } is a magic series of order 4
– The sum equals to 34.
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Magic series

● Every Row set Ri and every Column set Cj of a semi-
magic or magic square is a magic series.

● We make the list of all magic series as the first step of 
the enumeration.

N The number of magic series

3 8

4 86

5 1,394

6 32,134

7 9,957,332
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Enumeration of semi-magic squares
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R1, R2, … RN : magic series 

C1, C2, … CN  : magic series

Ri  ∩ Rj =    for  i ∅ ≠ j
Ci  ∩ Cj =    for  i ∅ ≠ j

| Ri ∩ Cj |  = 1 1 to 1 
correspondence

Enumerate all possibilities of Ri  and Cj such that 
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(N!)2/4 multiplicity

R1, > R2, > … > RN 

C1, > C2, > … > CN

All permutations of R’s and that of C’s generate different 
semi-magic and magic squares. Hence, multiply by ( N! )2/4.

We only have to enumerate Ri  and Cj such that 

To eliminate the remaining trivial duplicates, add a 
constraint  R1 > C1
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Result for N = 6

● R1, > R2, > … > R6 : magic series, Ri ∩ Rj =   for  i ∅ ≠ j
● C1, > C2, > … > C6 : magic series, Ci ∩ Cj =   for  i ∅ ≠ j
● R1  > C1,       | Ri ∩ Cj | = 1

The result for N= 6: 
The number of combinations of Ri  and Cj such that 

is 729 866 205 597 222 196.

x 6! x 6! / 4 => 94 590 660 245 399 996 601 600.

matches the result by A. Ripatti (2018). 
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How about the magic square?

Highly optimized code on Nvidia RTX-4090 can 
completes the semi-magic enumeration roughly in 
10,000 hours (14 months). 

Can we incorporate the diagonal constraints into this 
approach without prohibiting overheads? 

YES



Fast enumeration of magic squares
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A naive approach

● As in the case of semi-magic square, generate R’s and 
C’s such that
– R1, > R2, > … > RN : magic series, Ri ∩ Rj =   for  i ∅ ≠ j
– C1, > C2, > … > CN : magic series, Ci ∩ Cj =   for  i ∅ ≠ j
– R1  > C1,       | Ri ∩ Cj |  = 1

● Check the diagonal sums for every permutations for the 
row sets and column sets.   ( N! )2 / 4 ways of 
permutations to check.

● It is a correct method, but practically prohibitive.
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Add diagonal candidate magic series

● Generate R’s, C’s, and X’s such that

– R1, > R2, > … > RN : magic series, Ri ∩ Rj =   for  i ∅ ≠ j
– C1, > C2, > … > CN : magic series, Ci ∩ Cj =   for  i ∅ ≠ j
– R1  > C1,       | Ri ∩ Cj |  = 1

– X1  > X2 : magic series
– | Xi ∩ Rj |  = 1
– | Xi ∩ Cj |  = 1
– | X1 ∩ X2 |  = N mod 2
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Add diagonal (candidate) magic series

● The existence of R’s, C’s, and X’s is not sufficient but only 
necessary for magic squares.

● How do we identify magic squares?
● Given sets of R’s and of C’s, a semi-magic square is 

determined.
● Let us see the arrangement of X’s on the square.
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Arrangement of diagonal candidates
● By Permuting R’s and C’s, can 

we make X’s diagonal?

 

● Answer this question without 
trying many permutations!

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1
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Arrangement of X is a permutation
● Elements of X appear once 

and only once in each row and 
in each column.

● Arrangement of X represents a 
permutation of N object, or an 
element of the symmetric 
group SN.

● Let up denote
– Arrangement of X1 by d  S∈ N

– Arrangement of X2 by u  S∈ N

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

d  1 2 3 4 5 6      u  1 2 3 4 5 6 
    4 1 3 2 6 5          6 5 2 4 1 3 
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X1 aligned down diagonal

● By permuting columns( or 
rows ), we can always align X1 
down diagonal.
d → dd-1 = e,   u → ud-1

● To keep X1 down diagonal, 
– further rearrangement is 

restricted to conjoint 
permutations of rows and 
columns.

● Can we align X2 up diagonal?

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1

No, in this case. Why?
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Conjugacy relation
● Conjoint permutation of rows and 

columns is a conjugate 
transformation:
– X → P-1 X P,     X, P  S∈ N

● Can we align X2 upward diagonal?

● Is ud-1 conjugate to the upward 
diagonal (reversed order) 
permutation?

X2

X2 ・

・ X2

X2 ・
X2 ・

・ X2

ud-1 1 2 3 4 5 6　up diagonal 1 2 3 4 5 6

       5 4 2 6 3 1                       6 5 4 3 2 1
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A theorem in the symmetric group  

● Two permutations are conjugate if and only if they have 
the same cycle type.
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Cycle type of the upward diagonal permutation

● The cycle type of the upward diagonal 
(reversed order) permutation consists 
as many 2-cycles as possible and only 
one unpaired 1-cycle for odd N.
– 1↔︎N,  2↔︎N-1,  3↔︎N-2 ….

● (N+1)/2 is a 1-cycle for odd N

・
・

・
・

・
・

Up diagonal perm.  
1 2 3 4 5 6
6 5 4 3 2 1
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No need to worry about 1-cycle

● Because we have imposed that

| X1 ∩ X2 |  = N mod 2
● No elements of X2 appears on 

the diagonal line for even N. 

Only one appears for odd N. 

● This ensure automatically the 
correct 1-cycle components.

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1
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All we have to check

● ud-1 has no cycles longer than 2,
● or (ud-1)2 = e 

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1
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How to check (ud-1)2 = e ?
● For a permutation p, we define 

a function p( ) such that

p:    1     2     3     …  N
     p(1) p(2) p(3) …. p(N)

● ( ud-1 )2 = e is expressed as

u( d-1( u( d-1( 1 ) ) ) = 1
u( d-1( u( d-1( 2 ) ) ) = 2
u( d-1( u( d-1( 3 ) ) ) = 3
….
How far to go ? 
No need to check all.

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

d  1 2 3 4 5 6      u  1 2 3 4 5 6 
    4 1 3 2 6 5          6 5 2 4 1 3 
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How to compute u( ) and d-1( )?
● Provided 

– Intersec( X, C ) 
● The common element of two 

magic series.
– Elem2row( elem )
– Elem2col( elem )

● Which row/column an element 
belongs to.

● d-1( i ) =
Elem2col( Intersec( X1, Ri ) )

● u( i ) =
Elem2row( Intersec( X2, Ci ) )

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1

d  1 2 3 4 5 6      u  1 2 3 4 5 6 
    4 1 3 2 6 5          6 5 2 4 1 3 
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Intersec( ), Elem2row/col[ ]

● Intersec( X, Y )
– Find the bit position of X & Y ( bit-wise and )
– using Count Leading Zero instruction, or ...

● Elem2row/col[ elem ]
– Maintain auxiliary arrays which map elements to 

row/column.
● See sequel videos for details.
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For N=6

if u( d-1( u( d-1( 1 ) ) ) ) == 1

we find a 2-cycle ( 1, u( d-1( 1 ) ).

else no magic square, stop

If( u( d-1( 1 ) ) != 2 )

check if u( d-1( u( d-1( 2 ) ) ) ) == 2

else

check if u( d-1( u( d-1( 3 ) ) ) ) == 3
● If passed all the above checks, we have two 2-cycles. 

Remaining elements cannot form a 3-cycle or longer.
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Check function at the deepest level

● Bool MagicSquare( R[ ], C[ ], X[ ], elem2row[ ], elem2col[ ] ) {

int c1 = elem2col[ Intersec( X[1], R[1] ) ];

If ( elem2row[ intersec( X[2], C[ c1 ] ] != 1 ) 
return false;

int r2 = ( c1==2 ) ? 3 : 2;

int c2 = elem2col[ Intersec( X[1], R[ r2 ] ) ];

return elem2row[ intersec( X[2], C[ c2 ] ) ] == r2;

}
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Check function at the deepest level

● Bool MagicSquare( R[ ], C[ ], X[ ], elem2row[ ], elem2col[ ] ) {

– No loops
– No function calls
– No large tables
– No side effects ( important for parallelization )

}



  46

A graphical view

X1 X2

X2 X1

X1 X2

X1 X2

X2 X1

X2 X1
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A graphical view

● Which arrangement of X2 after 
X1 diagonalized leads to a 
magic square?

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1
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Symmetric patterns of up-diagonal candidates for N=6 (A conjugacy class of S_6)

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

■ ■ ■ ■ ■
■ ■ ■ ■ ■

Symmetric patterns lead to magic squares 
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A graphical view

● Place 1 in place of X2 and 0 
otherwise.

X1 X2

X1 X2

X1 X2

X2 X1

X2 X1

X2 X1



  50

Permutation matrix

● A permutation matrix P is an 
orthogonal matrix which 
represents a permutation.

● P2 = I for the eligible 
arrangements.

● P2 = I  →  P = P-1  → P = PT

● P must be symmetric.

0 0 0 0 0 1

0 0 1 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0



Result for N = 6
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N = 6

● Generate R’s, C’s, and X’s such that

– R1, > R2, > … > R6 : magic series, Ri ∩ Rj =   for  i ∅ ≠ j
– C1, > C2, > … > C6 : magic series, Ci ∩ Cj =   for  i ∅ ≠ j
– R1  > C1,       | Ri ∩ Cj |  = 1
– X1  > X2 : magic series
– | Xi ∩ Rj |  = 1
– | Xi ∩ Cj |  = 1
– | X1 ∩ X2 |  = N mod 2

● And check if MagicSquare( Rs, Cs, Xs ) return true.



  53

Result for N = 6

● Generate R’s, C’s, and X’s such that

– ….
● And check if MagicSquare( R’s, C’s, X’s ) returns true.

● There are 
– 739 745 383 235 859 818 combinations.
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M-transformation

● M-transformations consist of permutation of rows and 
that of columns and preserve elements in diagonal lines.

● All magic squares generated by M-transformations 
correspond to the same combination of R’s, C’s, and X’s.

● Every time the function MagicSquare( R[ ], C[ ], X[ ], 
elem2row, elem2col ) return true, we get all magic 
squares generated by the M-transformation as a set.

● Simply multiply the result by 24 for N=6.
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Result for N = 6

● There are 
– 739 745 383 235 859 818 combinations.
– x24 = 17 753 889 197 660 635 632 magic squares.
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Computation time

● An optimized code running on a single RTX-4090 system 
enumerates  6x6 magic squares in about

54,000 hours.  = 6 years and 3 months
● The final result was obtained by performing the 

enumeration twice to detect and correct hardware errors.

The entire calculation took about 2 years of real time using 
many GPU resources on cloud services.



To be explained
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To be explained
● High degree parallelization

– Roughly 20,000 threads on an RTX-4090
● Factoring, optimizations, and tricks 

– Some are GPU specific
● How to maintain elem2row/column tables
● Halving the enumeration using complementarity
● Utilizing cheap resources on clouds
● All the above are indispensable for N=6 enumeration to 

be feasible.
● See sequel videos for details. 
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References

● See the description text of this video.
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